Het plastische OCD brein:
nieuwe aanknopingspunten voor preventie, vroeginterventie en innovatieve therapieën

Prof.dr. Odile A. van den Heuvel
Psychiater VUmc

oa.vandenheuvel@vumc.nl
Emotional paradigms in OCD: Meta-Analysis

- 23 studies focusing on emotional processing in OCD
 - 9 symptom provocation (images)
 - 6 emotional faces (images)
 - 8 other (written symptom provocation/cognitive-emotional tasks)

Total number of OCD patients: 514
Total number of healthy controls: 512

OCD > HC

Increased activation in:
- bilateral amygdala
 - symptom provocation > other paradigms
 - unmedicated patients > medicated patients
- right putamen
 - medicated patients > unmedicated patients
- subgenual ACC / OFC

Thorsen et al., Biol Psych CNNI (in press)
Resting state fMRI may be a useful tool in the future to predict response to CBT in OCD patients.

Higher ‘degree centrality’ (= the number of links incident upon a node) in right basolateral amygdala predicts better response to CBT.

Gottlich et al. 2015, Biol Psychology
pre-SMA Hyperactivity in OCD + Siblings

SJ de Wit et al., 2012, Am J Psychiatry
dlPFC Hyperactivity/Inefficiency in OCD + Siblings

FE de Vries*, SJ de Wit* et al., 2014 Biol Psychiatry
Impaired Cognitive Reappraisal

emotion regulation:
main effect over all subjects (N=81) and all stimuli

Contrast: fear regulate > attend

S.J. de Wit et al., 2015 Psychol Med
OCD Brain Imaging Consortium (OBIC)

N=412 OCD
N=368 controls

GM:
decreased volume:
 - dorsomedial PFC
 - IFG/insula
increased volume:
 - cerebellum

WM:
decreased volume:
 - prefrontal WM
 - thalamus

de Wit et al. 2014, Am J Psychiatry
Meta-analysis across Psychiatric Disorders

N=193 studies
= 15,892 subjects
6 disorders:
- Schizophrenia
- Bipolar disorder
- Major depressive disorder
- Addiction
- OCD
- Anxiety

Goodkind et al. JAMA Psych, 2015
Group x Age interactions effects in Striatum and Hippocampus

In OCD patients (with increasing age):

- preservation of striatal volume
- more pronounced hippocampus volume reduction

Meta-analysis across Anxiety Disorders

SDM Signed Differential Mapping
http://www.sdmproject.com/database

A

OCD vs healthy controls
OADs vs healthy controls
OCD vs OADs

(B) Left putamen
Right putamen

Left ACG
Right ACG

(Coronal y=6) (Sagittal x=6)

Radua et al. Arch Gen Psych, 2010
From Anxiety to Compulsivity

Obsessive-compulsive spectrum disorders

- Increased ventral circuit ‘emotion’ / ‘motivation’
- Compulsivity

OCD and other anxiety disorders

- Decreased dorsal circuit ‘cognition’
- Control
- Emotion regulation
- Executive function

OCD = impulsive-compulsive spectrum disorder

- Repetitive behaviour
- Impaired response inhibition
- Impaired cognitive ‘top-down’ control
- Decreased function of frontal-striatal circuits

OCD = anxiety disorder

- Harm avoidance / doubt / uncertainty
- Anxiety / stress
- Hyperresponsive limbic circuit

OCD = anxiety disorder

- Repetitive behaviour
- Impaired response inhibition
- Impaired cognitive ‘top-down’ control
- Decreased function of frontal-striatal circuits

OCD = anxiety disorder

- Harm avoidance / doubt / uncertainty
- Anxiety / stress
- Hyperresponsive limbic circuit
ENIGMA
OCD Working Group

http://enigma.ini.usc.edu/

[Map of ENIGMA OCD Working Group locations]

[Logos of Amsterdam Neuroscience, VU University Medical Center, NIH]
ENIGMA-OCD

Subcortical Meta-Analysis - Adults

Boedhoe et al. 2017 (Am J Psychiatry)
ENIGMA-OCD
Subcortical Meta-Analysis- Children

Boedhoe et al. 2017 (Am J Psychiatry)

ICV
Accumbens
Amygdala
Hippocampus
Pallidum
Putamen
Caudate
Thalamus
Lateral Ventricles

Cohen's d effect size [95% CI]
ENIGMA-OCD
Subcortical Volume

![Diagram showing subcortical volume changes in pallidum and thalamus over age from 0 to 65 years.](image)

- Pallidum: OCD > HC
- Thalamus: OCD > HC
Decreased cortical thickness in frontal and temporal areas ($d \approx -0.2$, $P_{FDR} < 0.05$)

Boedhoe et al. 2018, Am J Psychiatry
Decreased surface area
in frontal, parietal, cingulate and occipital regions (d ≈ -0.3, P_{FDR} < 0.05)
ENIGMA-OCD
Effects Medication

\[\text{Med+ OCD (N=646) vs HC (N=1436)} \]

\[\downarrow \text{corticale dikte in frontale, temporale, parietale, en occipitale regio's} \]

\[\text{Unmed OCD (N=831) vs HC (N=1436)} \]

Geen groepsverschil

Boedhoe et al., 2018 Am J Psych
early neurodevelopment → disease onset → neuroplastic changes due to chronic symptomatology and therapeutic interventions

Oorzaak versus Gevolg

‘cause’

‘consequence’
Phenotype over the Lifespan

‘anxiety’ → ‘compulsivity’

inhibition
uncertainty
obsessions

goal-directed
compulsions

habits
Modellen voor OCD

van den Heuvel et al. 2016, Eur Neuropsychopharmacology
Global OCD project (funded by NIMH)

PI: H. Blair Simpson, Columbia University, New York, USA
PI Netherlands: Odile van den Heuvel

Role NL: 1 of 5 sites worldwide, coordination of imaging

PhD student: Niels de Joode
Project members NL: Ton van Balkom, Neeltje Batelaan, Petra Pouwels, Chris Vriend, Merijn Eikelenboom

Aim: to identify reproducible neuroimaging signatures those distinguish cognitive and clinical profiles of OCD

Design: multi-center harmonized data-collection on clinical phenotype, neurocognitive profile and neuroimaging markers in 250 OCD patients, 250 healthy controls and 125 unaffected siblings

Start: January 2018
Inclusion criteria:
Ages 18-50
Current DSM-5 criteria for OCD, with both obsessions and compulsions;
OCD is the principal psychiatric problem (YBOCS score ≥16);
Not on psychotropic medication (for at least 6 weeks; benzodiazepines / sleeping medication at least 1 week)
No current cognitive behavioral therapy (exposure in vivo with response prevention) for their OCD symptoms (last 6 weeks)

Project participation:
3 days assessment (2 clinical assessments and 1 MRI session) within 2 weeks time
+ 1 FU measurement (questionnaires only)

More information:
Niels de Joode > n.dejoode@vumc.nl
Emotion regulation training

‘prevention’

Concentrated ET Neuromodulation (rTMS/tDCS/DBS/surgery)

‘limit chronicity’

‘early and effective treatment’

Prediction treatment response
Based on Gogtay et al. PNAS 2004;101:8174-79
The dorsal prefrontal cortex (as part of the dorsal ‘cognitive control’ circuit) is the last part of the brain reaching mature state.
Project 2 Generation R (funded by NWO-ZonMW vidi)

PI: Odile van den Heuvel
PhD student: Cees Weeland
Project members: Tonya White, Henning Tiemeier, Manon Hilligers

Aims:
> Identify the neural correlates of impaired cognitive control and early OCD symptoms in children
> Identify the pre/perinatal environmental factors contributing to vulnerability and resilience

Design: longitudinal design within Generation R study

Start: May 2018

Inclusion: data already collected
Environmental and Genetic factors in Brain Development

Generation R cohort

Planned analyses in Generation R study (Rotterdam, The Netherlands), population-based birth cohort N>9000 pregnant women, N=350 children scanned at 6-8 yr, N>5000 children scanned at age 10 yr
Aanknopingspunten voor Innovatie

‘prevention’
Emotion regulation training

‘early and effective treatment’
Prediction treatment response

‘limit chronicity’
Concentrated ET Neuromodulation (rTMS/tDCS/DBS/surgery)
PI: Odile van den Heuvel
PhD student: Niels de Joode
Project members: Chris Vriend, Anouk Schrantee, Ton van Balkom, Chaim Huyser

Aim: to understand the variation in thalamus and pallidum volume during the different stages of development and disease and how this relates to fluctuations in glutamate concentration.

Design: cross-sectional lifespan approach, using high-resolution (7 Tesla) structural MRI (regions-of-interest: thalamus and pallidum) combined with dynamic MRS to measure state-dependent fluctuations in glutamate concentration and brain activation

Start: mid 2018

Inclusion: broad range in developmental age (10-55 yr) and disease duration
Project 4

Inference Based Approach (funded by NWO)

PI: Henny Visser (GGZ Centraal)
PhD students: Emma Koenen (imaging) & Nadja Wolf (clinical)
Project members: Ton van Balkom, Harold van Megen, Odile van den Heuvel, Patricia van Oppen

Aim: who responds best to what?

Design: multi-center randomized controlled non-inferiority trial comparing 20 sessions CBT to 20 sessions IBA with pre-posttreatment MRI

Start: Autumn 2018

Inclusion: 200 OCD patients
Project 5
Intensive Exposure Therapy (funded by Norwegian grant)

PI: Gerd Kvale & Bjarne Hansen (Bergen, Norway)
PhD student: Anders Lillevik Thorsen
Project members: Odile van den Heuvel, Stella de Wit, e.a.

Question: which neural biomarkers predict good treatment response and maintained remission?

Design: pre-post intensive ET MRI + 3 months FU MRI

Start: data collection completed (2014-2018)

Analyses starting (2018-2019)
Emotion regulation training

‘prevention’

‘early and effective treatment’

Prediction treatment response

Concentrated ET Neuromodulation (rTMS/tDCS/DBS/surgery)

‘limit chronicity’
Transcranial Magnetic Stimulation
Modulation Treatment Response

Emotion / Motivation Cognition

Ventral ↑ ventral frontal-striatal & limbic circuits

Dorsal ↓ dorsal frontal-striatal circuit

OCD patients: High-frequency rTMS vs. placebo (= stimulation)

Controls: Low-frequency rTMS vs. placebo (= inhibition)
repetitive Transcranial Magnetic Stimulation (rTMS)

day 1
fMRI during emotion regulation paradigm version 1

SPM:
Single subject analysis reappraise > attend stimulation coordinates

day 2
20 min rTMS treatment (1 Hz, 10 Hz or sham) using neuronavigation

fMRI during emotion regulation paradigm version 2

repeated measures analyses day 1 versus day 2, 1st level

2nd level group analysis
Effect of rTMS on Habituation

OCD patients:

Sham:
No decrease in state anxiety (day 2 vs day 1) in response to exposure

10 Hz DLPFC:
Decreased state anxiety at day 2 (habituation)

controls:

Sham:
Decreased state anxiety at day 2 (vs day 1) in response to exposure

1 Hz DLPFC:
Less habituation

S.J. de Wit et al., 2015, Psychol Med
PI: Odile van den Heuvel
PhD student: Sophie Fitzsimmons
Project members: Ysbrand van der Werf, Dilene van Campen, Neeltje Batelaan

Aim:
- to compare the mechanisms of effect between two different stimulation protocols, i.e., targeting the dorsal ‘cognitive control’ circuit (DLPFC-rTMS) and the sensorimotor circuit (SMA-rTMS)
- to determine the role of glutamate in the rTMS-induced changes
- to establish the effects of rTMS on the ability to profit from behavioural therapy (exploratory analysis)

Design: RCT (3 stimulation conditions) with pre-post EEG and MRI
- low-frequency SMA-rTMS (n=25), high-frequency DLPFC-rTMS (n=25), and placebo stimulation (n=25)

Start: Summer 2018

Inclusion: 75 adult OCD patients who did not respond sufficiently to behavioural therapy and medication.
Acknowledgements

Global OCD Project

Columbia University, New York, USA: H. Blair Simpson and team
VU university medical center, Amsterdam, NL: Odile van den Heuvel and team
NIMHANS, Bangalore, India: Janardhan Reddy and team
Sao Paulo, Brazil: Euri Miguel and team
Cape Town, South Africa: Dan Stein and team
Funding: NIMH (R01MH113250-01)

Section Neuropsychiatry, Vumc, Amsterdam

Ysbrand van der Werf, Chris Vriend, Dilene van Campen, Kathleen Thomaes, Hein van Marle, Stella de Wit, Froukje de Vries, Sonja Rutten, Premika Boedhoe, Tim van Balkom, Ires Ghielen, Merijn Joling, Christa van der Heijden, Inga Aarts, Niels de Joode (NIMH / 7 Tesla MRI-MRS), Sophie Fitzsimmons (TMS), Emma Koenen (IBA), Cees Weeland (Generation R)

In collaboration with GGZinGeest (Ton van Balkom, Neeltje Batelaan, Merijn Eikelenboom, Patricia van Oppen, Aartjan Beekman, Jan Smit, Brenda Penninx), GGZ Centraal (Henny Visser) and NOCDA.

Lifespan approach in OCD

In collaboration: Generation R (Tonya White, Henning Tiemeier, Manon Hilligers), Spinoza centrum (Anouk Schraantee).

Funding:
NWO ZonMW VIDI (016.176.306)

ENIGMA:

Paul Thompson (PI ENIGMA), Neda Jahanshad
Derrek Hibar, Lianne Schmaal & Dick Veltman

ENIGMA OCD working group:
Dan Stein (co-chair), Premika Boedhoe
+ collaborators from >30 sites (Netherlands, UK, Sweden, Spain, China, Korea, Japan, Brazil, South Africa, Switzerland, USA, Canada, India, Italy, Germany)

Funding ENIGMA:
1. NIH: BD2k (Big Data) U54 EB020403-02
2. Neuroscience Campus Amsterdam (NCA)

The OCD Team, Bergen, Norway
Gerd Kvale, Bjarne Hansen, Anders Likkevik Thorsen